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Abstract
A Barabási–Albert scale-free network is constructed whose nodes are the
Poisson distributed random points within a unit square and links are the straight
line connections among the nodes. The cost function, which is the total wiring
length associated with such a network defined on a two-dimensional plane,
is optimized. The optimization process consists of random selection of a
pair of links and rewiring them to reduce the total length of the pair but
with the constraint that the degree as well as the out-degree and in-degree of
each node are precisely maintained. The resulting optimized network has a
small diameter as well as high clustering and the link-length distribution has a
stretched exponential tail.

PACS numbers: 02.50.−r, 89.20.−a, 89.75.−k, 89.75.Hc

The Internet is a very complex network connecting a large number of computers around the
world [1, 2]. The nodes of this network may be interpreted as the routers and links as the cables
connecting computers. The network can also be described in the inter-domain level where
each domain is represented by a single node and each link is an inter-domain connection. Such
a network is well described by a graph consisting of a set of vertices and another set of edges
among the vertices. Without assigning any weight to the links between the nodes only the
topological structure of the Internet is meaningful. Study of the Internet’s topological structure
may be important for designing efficient routing protocols and modelling Internet traffic.

The Internet is one of the large class of real-world networks that exhibit small-world
and/or scale-free properties, e.g., social networks [3], biological networks [4, 5], electronic
communication networks [1, 2], etc. Quantities that characterize a network of N nodes are
the diameter D(N) which measures the topological extension of the network, the clustering
coefficient C which measures the local correlations among the links of the network and
the nodal degree distribution P(k). In a small-world network (SWN) [6], the diameter
D(N) of the network scales logarithmically with N whereas for a scale-free network (SFN)
the degree distribution has a power law tail: P(k) ∝ k−γ . Barabási and Albert (BA)
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showed that a growing network with preferential link attachment probability is a SFN with
γ = 3 [7].

Waxman first studied probabilistic graph models of the Internet where links have weights
which are their physical lengths [8]. The link-length distribution in such networks decays
exponentially: D(�) ∼ exp(−�/�0). Faloutsos et al observed that the out-degree distribution
of the Internet follows a power law tail [1]. Yook et al observed that the distribution of routers
of North America is a fractal set and the link-length distribution is inversely proportional to
the link-lengths [9]. It is suggested that in the growing Internet, when a new node becomes
a member of the network, two competing factors control the decision to which node of the
already grown Internet the new node will be connected. The factors are the degree ki of the
existing node i and in general the αth power of the length � of the link connecting the new
node and the node i. The preferential attachment probability for the ith node is therefore:
πi ∝ ki�

α .
Recently it has been argued that such a network is scale-free for all values of α >

αc = 1 − d in d dimensions and the link-length distribution generally follows a power law
D(�) ∼ �δ where δ(α) = α + d − 1 [10, 11]. For α < αc, the degree distribution decays
stretched exponentially but D(�) still maintains a power law where δ saturates at −d − 1. The
limit of α → −∞ is interesting where each node connects only to its nearest earlier node. In
a regular network in the form of a linear chain, similar studies have been done [12]. Interplay
between the preferential attachment and the link-length selection within an interaction range
for the Euclidean networks is studied in [13].

In this paper, we associate a cost function associated with such networks. Each link of
the network has a cost equal to its Euclidean length � and therefore the cost function of the
whole network is the total length of all the links of the network. The question we ask is, how
can one construct a small-world scale-free network with minimal cost? To study this we start
generating an N-node BA SFN on a two-dimensional plane. Links are then interchanged to
reduce the cost function keeping the topology, i.e., the degree value of each node, intact. The
optimization of the wiring length of networks on lattices has been studied in [14].

We start by constructing a Barabási–Albert SFN embedded in the Euclidean space
as follows. Let (x1, x2, . . . , xN) and (y1, y2, . . . , yN) be the independent identically
and uniformly distributed random variables on the interval [0, 1]. To construct one
random configuration of the network let a specific set of values of the N pair variables
{(x1, y1), (x2, y2), . . . , (xN , yN)} be the coordinates of the set of N points on the unit square
representing the set of nodes of the network with serial numbers i = 1 to N assigned to them.
We use first m + 1 points with serial numbers i = 1 to m + 1 to construct a (m + 1)-clique
by connecting each point with rest of the m points. Then following the serial numbers new
points are added to the network one after another and each node is connected to randomly
selected m distinct previous nodes. The probability of linking the new node with serial
number j to a previous node i is linearly proportional to its degree, ki . The network thus
constructed up to N nodes is exactly the BA network [7]. At the same time it is a small-
world network, i.e., the diameter D(N) of the network measured by the maximal distance
between an arbitrary pair of nodes grows as log(N). In this paper we restrict ourselves to
m = 2.

Let a denote the symmetric adjacency matrix of size N × N for our network such that
aij = 1 if there is a link between the pair of nodes i and j and 0 otherwise. Let �ij denote the
shortest Euclidean distance between the pair of nodes i and j taking into account the periodic
boundary condition. Therefore, when aij = 1, �ij is the length of the connecting wire of the
link between i and j . The total cost function L(N) is therefore the sum over all link-lengths
of the network, i.e., L(N) = ∑

i>j aij�ij .



Letter to the Editor L281

or

1

4

1

4 4

13

2 2

3 3

2

Figure 1. Two possible rewirings of a pair of links to reduce the total length of the two links.

For the convenience of discussion we define a degree vector similar to the contact vector
generally used in polymer physics. Our degree vector c describes the topological connectivity
of the network and has N elements ci = ki , the degree of the ith node. In the initial BA
scale-free network one can associate a notion of time as if nodes are introduced one at each
time unit. Therefore, the links of the node i introduced at time i are divided into two groups:
‘outgoing’ and ‘incoming’. Each node has only kout = m outgoing links connected to m other
nodes which are older than this node and it can be connected to kin = k − m other nodes
which are younger than this node. Consequently, the degree vector can be split into two other
degree vectors cout and cin such that cout

i = kout
i and cin

i = kin
i and c = cout + cin.

Next, we perform the optimization dynamics to minimize the total cost function L(N).
The optimization dynamics conserves the number of links in the network; in addition, it not
only maintains the same degree vector c but also cout and cin separately and thus ensures that
the out and in degree distributions of the network remain exactly the same as they were before
the optimization process started. We call this ‘time-ordered’ rewiring. One trial of rewiring
in the optimization scheme consists of selecting four nodes n1, n2, n3 and n4. The first node n1

is randomly selected from the set of N nodes. n2 is selected randomly from the k1 neighbours
of n1. Similarly n3 ( �= n1 �= n2) is selected randomly from N nodes and n4 ( �= n1 �= n2)

is again one of the k3 neighbours of n3. The move must maintain the conservation of link
numbers as well as degree distribution. We replace the link pair n1n2 and n3n4 by another pair
of links if either of the following two conditions is satisfied:

(i) if a13 = a24 = 0 and �12 + �34 > �13 + �24, we link n1n3 and n2n4

(ii) if a14 = a23 = 0 and �12 + �34 > �14 + �23, we link n1n4 and n2n3.

If both are satisfied we accept one of them with probability 1/2. If only one is satisfied we
accept that (figure 1). If neither of the two is satisfied we go for a fresh trial. We also study
a second type of rewiring process where only the total degree vector c is maintained but not
individually cout and cin. Here in the final optimized network, a particular node may have
all neighbours which are younger than this node. We call this process the ‘random’ rewiring
method. Note that time-ordering always rules out one of the two conditions above, so the case
of accepting (i) or (ii) with probability 1/2, in effect, applies to ‘random’ rewiring only. In
figure 2 we show how an initially complicated network becomes less messy with increasing
number of rewiring trials.

Since we accept the move only if the total rewired cost is reduced, the trial is similar to
the zero-temperature Monte Carlo dynamics. The total cost L(N) monotonically decreases
with the number of successful trials and the number of unsuccessful trials between successive
accepted moves increases. We typically try around 10(mN)2 such trials so that the plot of
L(N) with logarithm of the number of trials nearly reaches a plateau.

From each point one can measure N − 1 distances and if these distances are sorted in
an increasing sequence, one has the first-neighbour distance, second-neighbour distance, . . .

(N − 1)th-neighbour distance, etc. It is known that the average nth-neighbour distance
〈
Rn

N

〉
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Figure 2. Snapshots of the optimized network generated by the random rewiring process for
N = 512 and m = 2. (a) The initial network with L ≈ 395, (b) L ≈ 304 at t = 1000, (c) L ≈ 170
at t = 10 000 and (d) L ≈ 68 at t = 10 000 000 where t is the number of rewiring trials.

varies as N−1/2 if n/N � 1 and it is of the order of 1 when n/N ∼ 1 in the limit of N → ∞
[15]. There is no other variation like N−x when x is neither 0 nor 1/2 but lies in between.

In the optimized network, the links are not necessarily a fixed (n) neighbour distance but
a complex mixture of many neighbour distances. More elaborately, it is expected that many of
the links of the optimized network are first-neighbour distances, a smaller number are second-
neighbour distances, even fewer are third-neighbour distances, etc. In the optimized network
we first calculate the probability density of the link-length distribution D(�). This distribution
on scaling by the average link-length 〈�(N)〉 is nearly the same for the time-ordered as well
as the random rewiring processes. In contrast to expectation, this distribution has a maximum
and it fits very well to a functional form D(�)〈�(N)〉 ∼ xα e−axβ

with x = �/〈�(N)〉. The fit
on a linear scale gives α = 1.4, 1.1 and β = 0.8, 0.9 approximately for the time-ordered and
random rewiring processes, respectively. The network has N� = 2N−m−1 links and therefore
L(N) = N�〈�(N)〉. We plot in figure 3 〈�(N)〉 with N/ log N and observe excellent straight
lines on a double logarithmic scale. Therefore, 〈�(N)〉 ∼ (N/ log N)µ where µ = 0.46 and
0.52 with an error of 0.05 approximately for the time-ordered and random rewiring processes,
respectively.

The topological size of the network is measured by the diameter of the network. The
distance dij between an arbitrary pair of nodes i and j is the number of links on the shortest path
connecting the two nodes. The diameter dm is the maximal distance on a network. The average
diameter D(N) represents the configuration averaged maximal distance 〈dm〉. Variations of
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Figure 3. (a) The link-length distribution D(�) in the optimized network: time-ordered (solid
line) and random (dashed line) scaled by the average link-length 〈�(N)〉 for N = 1024. (b) The
average length 〈�(N)〉 varies as (N/ log N)µ in the optimized network: time-ordered (circles) and
random (squares) rewirings.
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Figure 4. The average diameter of the network D(N) after optimization, as a function of number
of nodes N in the network: (a) for the time-ordered exchange D(N) = A + B log N where A =
1.22 and B = 1.11, (b) for the random exchange D(N) ∼ Nν where ν = 0.31 ± 0.04.

the average diameter of the optimized network with the network size are shown in figure 4.
For the the time-ordered exchange D(N) = A + B log N with A ≈ 1.22 and B ≈ 1.11
whereas for the random exchange D(N) ∼ Nν with ν = 0.31 ± 0.04, where the error 0.04
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Figure 5. The clustering coefficient C(k) as a function of the degree k shows a {k/{ln(k)}1/2}−b

behaviour with b ≈ 0.94 and 1.1 for the time-ordered (circles) and random (squares) rewiring
processes, respectively.

is estimated by the largest difference of the local slopes between successive points and the
mean slope. Although the degree distribution remains scale-free in the optimized networks
generated by both the time-ordered and random rewiring procedures, the first network retains
some long-range connections due to the constraint that both cout and cin are strictly maintained
whereas in the second network by random rewirings essentially all the connections are local,
i.e., typically a node has all neighbours within a spatial distance of the order of ∼N−1/2.

The local correlation among the links is measured by the clustering coefficient. The
clustering coefficient Ci of the ith node is measured by the ratio of the number of links ei

within the ki neighbours of the ith node and the number of links ki(ki − 1)/2 if the ki nodes
have formed an ki-clique, i.e., Ci = 2ei/{ki(ki − 1)}. The clustering coefficient of the whole
network C(N) is 〈C̄〉. Also the average clustering coefficient for the set of nodes of degree k
is defined as C(k). In general both these clustering coefficients may decrease as power laws:
C(N) ∼ N−a and C(k) ∼ k−b. In our case we start from the initial BA network where it is
known that a ≈ 3/4 and b = 0 [7]. We also calculate these quantities in the final optimized
state. The total clustering coefficient is found to be independent of N and therefore a = 0
whereas unlike a simple power law for C(k) we get a power law with logarithmic correction.
In figure 5 we plot C(k) with k/{ln(k)}1/2 and observe straight lines on a double logarithmic
scale implying the variation as

C(k) ∼ {k/{ln(k)}1/2}−b (1)

where b ≈ 0.94 and 1.1 for the time-ordered and random rewiring processes, respectively.
We cannot rule out the possibility that b is actually 1 for both processes. Many networks and
models show b = 1 [7, 16].

To summarize, we have studied a cost optimized network which has three main features
of the real-world networks, e.g., it is a small-world network, it is a scale-free network and
also it exhibits high clustering properties as well. We studied this network on the two-
dimensional Euclidean space which should be relevant in the context of the Internet. While
some links in the Internet are cableless (microwave) links, many connections are made by real
physical Ethernet cables. Therefore, the question of optimizing the cost of the total wiring
length of the network arises naturally, which is the main point of study in this paper. An
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optimized geographical embedding algorithm for scale-free networks was recently studied
independently [14]. Unlike in [14], our time-ordered optimization produces a statistically
non-homogeneous network and preserves a significant number of long-distance connections,
permitting the network diameter to still scale as log(N) as N → ∞. We also obtain a
stretched-exponentially decaying tail of the link-length distribution in the optimized network
which is unlike the power-law tail observed by Yook et al [9] and closer to the Waxman
result [8].
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